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We classify the possible permutational isomerizations of a given molecular skeleton in NMR- 
modes. Such a mode is the set of permutations which are indistinguishable from the point of view of 
NMR-line shape analysis. The present classification is compared to earlier ones and its advantages are 
underlined. 
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Considerable interest has been devoted to the application of group-theoretical 
concepts to the classification of intramolecular rearrangements. Several classifi- 
cations and theories have been extensively discussed and developed in the litera- 
ture [1-7]. More recently attention has been polarized on the problem of classi- 
fication of permutational isomerization reactions with respect to NMR line-shape 
theory [2, 5-7] since this method has been proved up to here to be the most power- 
ful tool for studying experimentally such rearrangements [7-9]. Different authors 
have discussed this problem [3-7] but essentially in two papers group theoretical 
concepts have led to a classification of permutational isomerization reactions with 
respect to the detection method used to observe them, namely NMR line shape 
analysis [5, 6]. The aim of this paper is to propose an alternative classification to 
those developed by Jesson and Meakin [6] and by Klein and Cowley [5]. 

Let us consider a set of N magnetically equivalent nuclei. By definition [ 10-12] 
a) all their chemical shifts are identical: al = a 2 = 0"  3 . . . . .  O" N 
b) the coupling constants between each of these nuclei and any other nucleus 

X in the molecule are identical Jlx=J2x . . . . .  JNx for all nuclei X of the 
molecule. 

* Aspirant at the Fonds National de la Recherche Scientifique. 
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It  can then be shown that all the line splittings on the N M R  spectrum due to 
couplings within the set of  N nuclei are unobservable. This means that the spin 
Hamil tonian reduces to an effective N M R  Hamil tonian [ l  l ]  where all the Jij 
coupling constants ( iCj ;  i=  l, 2 . . . N ; j =  l, 2. . .N) have been put equal to zero. 
According to Jesson and Meakin [6] we represent the group leaving this effective 
N M R  hamiltonian invariant by H (Req in Ref. [5]). Thus any permutat ion of  
nuclei belonging to H leaves the line-shape of the N M R  spectrum unaffected. For  
simplicity, we restrict ourselves to the classification of permutational  rearrange- 
ments [4]. 

In conformity with Ruch et al. [15], we call ordered molecule (OM) any 
distribution of  numbered ligands on numbered skeletal positions. All the possible 
rearrangements are then representable by a group of  allowed permutations [4] 
acting on an ordered molecule in which the numbers of  the ligands and the sites 
coincide (reference ordered molecule: R O M  [15]). We symbolize this group by 
the letter S 1 . As discussed by Jesson and Meakin [6] and by Klemperer  the group 
S is a direct product  of  groups of  permutat ion of  ligands of  identical chemical 
nature. Thus, if there are n 1 ligands of type l, n2 ligands of type 2, ..., nj ligands of 
type j ,  such that n~ + n 2 + . . .  + nj = n the ligands of  type 1 can be permuted on the 
sites numbered 1 to n~, the ligands of type 2 on the sites numbered n~ + 1 to 
nt +n2, ..., the ligands of  t ype j  on the sites numbered n 1 + n  2 + . . .  + n  j -  1 + l to n. 
In this way, all the possible ordered molecules of  the considered chemical system 
are represented by the permutat ion group S which is merely a direct product  of  
symmetric groups: 

S = S,1 | S,2 |  (1) 

Finally, in order to achieve the partition of the group S of  all allowed permutations 
in sets of  NMR-equivalent  permutat ions [5] 2 we need to define the subgroup G, 
a permutat ion group isomorphic with the symmetry group of  the rigid molecule.3 
F rom the preceding it is clear that the G group is a subgroup of  the H group, which 
in turn is a subgroup of  the S group. In addition we call A the permutat ion group 
which is isomorphic with the rotational subgroup of the molecular skeleton. 

For  simplicity, we will discuss here the concept of  N M R - m o d e  in achiral 
environment [4]. The discussion presented here could be extended to the chiral 
environment problem although it is certainly more delicate to be handled [-4]. 

1. Several authors have shown [3-7] that two permutat ions x and y such that 

y = g x g -  1 for any g e G  (2) 

are symmetry equivalent [3] permutations. I f  there exists a mechanism consistent 
with x, there exists also a mechanism consistent with y occurring at the same rate 
constant. For  that  reason they are NMR-equivalent  permutations.  The set of  all 

1 Throughout this work we adopt the permutation convention in which for instance the permuta- 
tion (143)(2) means: ligand on place 1 replaces ligand on place 4, ligand on place 4 replaces ligand on 
place 3, ligand on place 3 replaces ligand on place 1, ligand on place 2 stays on place 2; see Refs. [3-7,14]. 

z The concept of NMR-mode is called observable process by Musher, J.I. (Ref. [2]) and equivalent 
basic permutational sets by Jesson, J.P. and Meakin, P. (Ref. [6]). 

3 We exclude linear or planar molecules. 
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symmetry equivalent permutational rearrangements has been called basic permu- 
tational set by Jesson and Meakin [6, 7-1 and set of indistinguishable permutational 
isomerization reactions in achiral environment by Klemperer [4]. 

2. When two equi-energetic configurations k and l (respectively represented by 
right cosets A x  k and A x  ~) are separated by an energy barrier, it is clear that the 
rearrangements relating configuration k to configuration l and reverse rearrange- 
ments leading from l to k, have to be characterized by the same rate constant, as 
a consequence of the principle of detailed balance [4, 5, 13, 17, 18]. This implies 
that any permutation x and its inverse x-1 are mode-equivalent and as a conse- 
quence NMR-mode equivalent, even if they are not symmetry equivalent. 

3. It has been shown previously [3, 4, 16] that a right coset of the type Ax,  
where xeS,  contains all the permutations relating the ROM to all the OM's 
corresponding to the same configuration of the molecule, since they only differ 
by a rotational permutation a belonging to A. Moreover [3, 4], all the elements 
belonging to a right coset Gx transform the ROM into OM's which altogether 
correspond to a pair of enantiomeric configurations. Similarly, all the permuta- 
tions contained in a right coset H x  transform ~,~ff.rtsPln (ROM), the effective NMR- 
spin hamiltonian of the ROM into another effective NMR-spin hamiltonian 
g e S p i n / ~  

ff. \*~1. 

On the other hand, Hx also transforms the ROM into a set ofOM's  which possess 
all the same effective NMR-spin hamiltonian ~rspi.r For this reason these J"  elf. k~ )  �9 

OM's have to be considered together in a coset H x  that we call N M R  Configuration. 
This means that the isomerization into the various configurations Axi belonging 
to the same NMR-configuration H x  are indistinguishable. In the same way, two 
mechanisms consistent with permutations x and y related neither by 1. nor by 2. 
and occurring for this reason with different rate constants should be put together 
if y belongs to Hx.  Of course, two different N M R  configurations have the same 
N M R  spectrum in the absence of isomerizations between them: indeed their 
effective N M R  spin hamiltonians, although different, are isomorphic [10, 11, 16]. 

Summarizing these three features, we may assert that a permutation y is NMR- 
equivalent to x if and only if: 

1. y = g x g -  1 for any g~G (3) 

o r  

o r  

2. y = x  -1 (4) 

3. y = h x  for any h~H (5) 

or if y is related to x by any combination of the three preceding relations. 
We now want to show that the set of all NMR-equivalent permutations related by 
one or more of the three preceding relations is a union of double cosets (D.C.) 

M ~  R = H x H w  H x - 1 H .  (6) 

We call such a complex an NMR-mode. 
Proof. A) Any permutation belonging to M ~  R is NMR-equivalent to x. 
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Any permutation y belonging to the double coset H x H  is related to x in the 
following way: y--h~xhp where h~ and hp belong to H. 

Four cases may arise. 

a) h~ and h a both belong to G or 
b) h a belongs to G, h~ does not belong to G. 

In both cases, y may be written as 

y =h~xg~. (7) 

On the other hand, it is always possible to find an element hr~H such that 

h~ = hrg~ ~ (8) 

so that y =h~(g~ lxg~). (9) 

Therefore, x and y are NMR-equivalent by combination of relations (3) and (5). 
c) h~ belongs to G; h a does not belong to G. 
Consequently, y may be written as 

y =guxha. (10) 

From (10), it follows that 

y-1  = h ~ l x - l g ~ l .  (11) 

In analogy with relation (7), it can be deduced that y-~ and x-1 are NMR- 
equivalent. Now, x -  1 is NMR-equivalent to x and y -  ~ is NMR-equivalent to y. 
So y and x are also NMR-equivalent. 

d) h, and h a do not belong to G; then, these elements may always be written as 

h~=guh ~ g~,~G ; h~, h~r (12) 

and 

h~=g~h~ g ~ G  ; h a, h~r (13) 

since G is a subgroup of H. Then, 

y = h~xh a = guh~xg~h6 = guzh6 

where z = h~xgv. 
In analogy with relation (10), z is NMR-equivalent to y;  in analogy with relation 
(7), x is NMR-equivalent to z. So x is NMR-equivalent to y. 

So far we have proved that any permutation of the D.C. H x H  is NMR- 
equivalent to x. Since the D.C. H x -  ~H contains merely all the inverses of the 
permutations contained in the D.C. HxH,  all the elements of the D.C. H x -  ~Hare 
NMR-equivalent to the elements of the D.C. H x H  in virtue of relation (4). 

B) Conversely, any permutation y which is NMR-equivalent to x belongs to 
M ~  R. This is evident from inspection of relations (2-5). 

We have thus proved that all the NMR-equivalent rearrangements, i.e. all the 
permutations which have to be carried together in a line-shape analysis in achiral 
environment are contained in a union of double cosets. The set of all the union of 
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D.C.'s is a partition of the group S of allowed permutations [3-7]. So, theoretic- 
ally, there are as many qualitatively distinguishable line-shape patterns as there 
are different M ~  R sets in the group S. This does not warrant however that NMR- 
line shapes corresponding to different NMR-modes are qualitatively distinguish- 
able (see for instance Ref. [6]), but such a situation can only be due to some 
unfavourable combination of experimental parameters. The number of sets 
defined by relation (7) is merely the maximal number of distinguishable NMR- 
modes in achirat environment [4]. Note moreover that one of these sets (when x 
is an element of H) corresponds to the NMR-mode for which the line-shape 
remains unaffected (the trivial identity NMR-mode, ~,tNMR__ r~a 1~ (xo) - -  ~t~t ).  

The theoretical treatment proposed here is more general than the proposal of 
Jesson and Meakin [6] since these authors did not anticipate the possibility that 
the D.C. H x H  is not self-inverse. This fact was already outlined by Klein and 
Cowley [5]. It should be mentioned that if 2. (relation (4)) is not assumed, our 
theorem would lead to an H x G  NMR-mode and not to the H x H  NMR-mode 
predicted by Jesson and Meakin [6]. This comes from the different argumentation 
used by us and these authors. Indeed relation (1) of Ref. [6] 

Pi = gkP j gk  I (14) 

coincides with our requirement (1), (relation (3)). However, our requirement (3), 
(relation (5)) does not correspond to relation (2) of Ref. [6] 

Pi = h~p~ h z (15) 

which is suggested without justification by Jesson and Meakin and which has been 
replaced by the requirement 

pi=h,p~ (16) 

in our theorem. It is then clear that combination of (14) and (16) leads to an H x G  
NMR-mode. 

On the other hand, the set of NMR-equivalent permutations defined here does 
not correspond conceptually and mathematically to the one proposed by Klein 
and Cowley. In the formalism of Klein and Cowley [5], the argumentation is 
divided into two main steps: construction on an idealized skeleton of the modes of 
rearrangements followed by an adjustment of the set obtained in this way to the 
actual symmetry of the molecular species under consideration. Such a reasoning 
does unfortunately not lead to a NMR-mode as being the set of all those permu~ 
tations which are indistinguishable by line shape analysis, since Klein and Cowley 
need a supplementary step, namely the construction of the site exchange matrix 
to find out whether their modes are distinguishable or not [5]; therefore the 
permutations contained in the set (29) or (25) of Ref. [5] do not correspond to the 
set of permutation M ~  a of relation (7). The difference between our formulation 
and that of Klein and Cowley relies on the fact that these authors start from the 
Kubo-Sack formula and from their expressions Ref. [5], Eqs. (25, 27, 29). It is 
possible that some stochastic assumption contained in the Kubo-Sack formula 
through Ref. [5], Eq. (27) leads to indistinguishable line-shapes for different 
complexes of type Ref. [5], Eq. (29). However, these stochastic assumptions are 
accounted for by the use of the effective NMR hamiltonian. 
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The main advantage of the NMR-mode concept discussed here is that it defines 
immediately the full set of permutations which have to be considered together in a 
line-shape analysis both on the basis of symmetry and kinetics. We now want  to 
illustrate these facts on two simple examples. 

Let us consider a six-coordinate octahedral molecular skeleton with six identical 
monoa tomic  ligands. In this case, the group S and the group H are the symmetric 
group of  permutat ions of  six objects, $6. So, all the possible permutat ions will 
belong to only one N M R - m o d e  which is trivially the group $6 itself in this case, 
so that line-shape analysis is not o f  any use in this problem. This result can also be 
obtained by the formalism of Jesson and Meakin [6] since in this case the only 
existing double coset is self-inverse. The use of  relation (25) of  Ref. [5], however, 
will lead in a first step tO five sets of  permutat ions (the five modes of  the octa- 
hedron El, 3, 4]). In a second step, by calculating the site exchange matrix, they 
however will appear  indistinguishable because the symmetry of  the effective N M R  
hamiltonian has not  been expressed in the first step. The second example we want 
to discuss, briefly is the very elegant study by Whitesides, Eisenhut and Bunting 
[8a, 8d]. In that particular case, the groups G and H reduce to the trivial identity 
group. So double cosets HxH all contain one element. As is seen f rom table 1 of  
Ref. [8d], all couples of  mutually inverse permutat ions have to be considered 
together because of  the principle of  detailed balance (see relation (5) and Refs. [4, 
5, 8d, 13, 18]). This type of constraints cannot  be deduced f rom the formalism of  
Jesson and Meakin [6], whereas they are automatically included by the mode 
concept discussed by Klein and Cowley and by the N M R - m o d e  definition given 
here. We think that  with the N M R - m o d e  concept defined here it is possible to pass 
round some difficulties encountered when constructing N M R - m o d e s  by use of  
the preceding formalisms. These difficulties have ted us to propose an alternative 
approach to the problem of  defining N M R - m o d e s  in achiral environment which 
could be used by searchers interested in experimental distinguishability of  re- 
arrangements by N M R  line shape analysis. 
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